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TIME OPTIMAL CONTROL WITH
AMPLITUDE AND RATE LIMITED
CONTROLS"

W. W. Schmaedeke'and D. L. Russelli-fv

2203 ABSTRACT

Necessary conditions leading to a method for the determination
of bounded control amplitude and amplitude rate time optimal
centrol trajectories by backing out of the origin are developed.
The backing out procedure requires choosing the response time,
the unaugmented system adjoint vector at the response time, the
rate 1imited control variable amplitudes at the response time, and
the rate limited control variable amplitudes at the initial time.
A set of consistency conditions on the control variables are then
used to determine the allowable control variable trajectories from
a finite set of possibilities. The state trajectories including
the state at the initial condition can be determined in the
usual manner from the control variable trajectories. ()é&ﬂé{;iz

INTRODUCTION
It has long been recognized that the maximum principle of
Pontryagin would have to be modified to allow for controls whose
switching rates were finite, due either to inertial or other
factors.
TheAfirst insight into the form of the resulting theory was
provided by Birch and Jackson in their 1950 paper, reference
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2, although they were discussing quite a different. problem.

The first discussion of the problem together with a set of
necessary conditions characterizing the optimal controllers was
provided by Chang. Several of the results in this paper were
indicated by him in reference 1. The proofs herein are
rigorous however, whereas Chang's are heuristic. The aspect of
the problem that 1s new in the treatment herein is the requirement

that solutions of the augmented adjoint equations be differentiable

on the whole interval (0,T) instead of merely pilecewise differentiable

on so called "pang" intervals., It 1s this requirement which allows
the "pang" intervals to be located. To be more specific, 1t 1s
shown that the optimal control 1s either at extreme amplitude or
extreme velocity. The sub-intervals of (O,T) over which this
behavior occurs can be determined 1f appropriate initial and

inal conditions are given.

PRELIMINARIES

Consider the linear differential equation

x = A(t)x + B(t)u + c(t) (1)
where A is an nxn matrix, B is an nxm matrix, and ¢ is an
n-vector. The elements of A, B, and ¢ are bounded continuous
functions of time on an interval I under consideration. It
is supposed that there are no constraints on the phase variables
x{(t) other than the given initial point and the target, and that
the controls u(t) have components that are bounded in amplitude
and rate. The class of admissible controls 1s defined as all

vector functions u(t) defined on various subintervals of I whose




components satisfy

a;y(t) < uy(t) < aei(t) i=1,...,m

. (2)
by (t) S uy(e) < by (t) 1 =1,..00,k;
where k < m. The functions ali(t)’ aEi(t), bli(t), and b21(t)
are bounded continuous functions with the further assumption
that
D1y <855 < Ppys Dyy <ayy < byy (3)
at all times at which the a's are differentiable (which is
assumed to be almost everywhere).
By defining new controls v, for 1 = 1,...,m with v, = ﬁl,
Vo = UpsesesVy = Upy Vg = UpgseeesVp = Uy and new phase
variables z5 for i =1,...,n + k with zy = xl,...,zn = Z,
Zogl = UpreeesZpap = Uy the system
z="Fz+0Gv+h (4)

is obtained where
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and where A is the original system's nxn coefficient matrix, B,

is an nxk matrix whose k columns are the first k columns of the

original control coefficient matrix B, B, 1s an nx (m-k) matrix

1
whose columns are the remaining (m-k) columns of B, and I, 1s a
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kxk identity matrix. The zero matrices are blocks of zeros of
the appropriate dimension to make F have dimension (n+k) x (n+k)
and G have dimension (n+k) X m; the number of zeros in h is k so
that h is an (nt+k)-vector.

The system (4) 1s now in a bounded phase setting, that is,

ajy £2,4(%) Cayys i=1,...,k (6)

(this is the bounded phase constraint); furthermore, the bounds

on the amplitude of the new control vector v(t) are given by

LR P

Dliivi(t)£b2i; izl’ooo,k

(7)

k+1, e e e ,m.

alJ < vJ(t) < 32‘15 J

NECESSARY CONDITIONS FOR OPTIMAL CONTROLS

For each time T with [0,t] contained in I, the set of all
admissible controls on [0,1] together with their corresponding
responses 1s considered. The set of attainability K(t) is the
set of all points x(t) in R™ which are terminal points of these
response trajectories, i.e., if x(t) is the response to the
control u(t) defined on the interval [0,t], then the point x(t) is
to be included in the set K(t). It can be shown that K(t) is a
compact convex subset of Rn. By considering the collection Z of
all non-empty compact subsets of R® with the distance d(Cl,C2)
between two such subsets C1 and 02 defined to be the infimum of
all numbers d such that C1 lies in the d-neighborhood of 02 and
02 lies in the d-neighborhood of Cl, 2 becomes a complete metric

space. Now the set K(t) is a compact subset of R and belongs
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to Z; furthermore, K(t) 1s continuous in T, (i.e. K(Tl) and K(T2)
are close in the above metric sense if T and T, are close
together). If x(0) 1s not in the target, then as 7T increases,
there i1s a first time T at which the set K(t) comes in contact
with the target. Thus the optimal response %(t) has its terminal
point Q(T) on the boundary of K(T).

Properties of controls u(t) on an interval [O,QQ whose responsesg

hit the boundary of K(tl) will be examined. To this end the

following definitions are made:

DEFINITION 1. The linear control process (4) subject to (6) and

(7) i1s considered. An admissible control v(t) on the interval
[0,T] is called an extremal control Q(t) in case there exists a
non-trivial solution $(t) of the adjoint equations¥*

v =-Fy
such that

0 Bl(s)]

T 0 Bl(s)
9(s)ds = max [ y/(s) [ v(s)ds
I ) O 0

vis I

T
J v/ (s) {
0

where the maximum is taken over all admissible controllers v(s).

IEMMA 1. A control ?(t) on [0,T] is extremal if and only if the
corresponding response z(t) has its terminal point 2(T) on the

boundary of K(T).

PROOF : Assume %(t) is such that Z(T) 1les in the boundary of K(T).

¥ A prime on a vector or matrix means the transpose of that
vector or matrix.
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Then let 7 be a support plane to K(T) at the point 2(T), and
let n be an outward normal to K(T) at the point Z(T). Then

T -am 20 (8)

for any point z(T) belonging to K(T). Now let A(t,s) be a
fundamental solution of the homogeneous equation corresponding
to (4) with A(s,s) = I, the (nt+k) x (n+k) identity, and consider

the variation of parameters formula for a solution of (4):

2(T) = A(T,0)z, + fT A(T,0)A™Y(s,0) [o Bl(s)] d(s)as

0

n
v -

.

(9)

T 1
+ [ A(T,0)A " (s,0)h(s)ds.
0

Hence

mtﬂm-zmn=n'fAmﬁ)[° %“1Wh%ﬂwhsim
0 I 0 (10)

Let ¢(s) be a particular solution of the adjoint equations by

defining
y'(s) = ' (T,8).
Then
fTw'(s) {O Bl(s)] [¥(s)-v(s)las 2 o, (11)
0 I 0

l.e., 9 is an extremal control.
The other case namely, if ?(t) is extremal, is proven by
beginning with equation (11) and proceeding backwards through the

proof of the first case. This completes the proof.
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According to Lemma 1, these extremal controls are candldates
for the optimal controls since previous remarks have established
that an optimal control has a response whose terminal point

lies on the boundary of K(T).
It will be convenient to decompose the adjoint vector ¥ /(s)
as follows |
/ / 4
¥(s) = (67°(s), ¢(s)) (12)
where 6(s) is an n-vector and ¢(s) 1s a k-vector. Then (11) be-

comes

T
| [¢7(s),67(s) By (s)1[¥(s)-v(s)lds > O. (13)

v(s) 1s decomposed by defining
V(s)
V(S)=[u(s)] (14)
o~
where V(s) 1s a k-vector whose components are
Vl(s) = vl(s),...,i(s) = v, (s), and where u(s) 1s an (m-k)-vector
whose components are gl(s) = uk+1(s)""’2(m-k)(s) = um(s).
Also, for later use, U(s) i1s defined as a k-vector whose
components are Gi(s) = ul(s),...;ﬁk(s) = u, (s). Then (13)

may be written as

T / A -~ T / A

é ¢ (s)[V(s)-¥(s)las + é 6"(s)B,(s) [u(s)-u(s)lds > o. (15)
It 1s now possible to refine Lemma 1 as follows:

LEMMA 2, An extremal control Q(t) must be such that 1ts first

k components (represented by 61t)) satisfy
T 7 EA ~
J ¢5(s) vi(s)-vi(s)]ds >0 (16)
0

for 1 =1,...,k, and for all‘Vi(s) which are admissible 1th

components of admissible controls v(s); furthermore, the remaining
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m-k components of ¥(t) (represented by‘ﬁ(t) satisfy

T

é [67(s)B,(s)], [§,(s) - u,(s)1ds > O, (17a)
or equivalently

T o, '

é (6 (s)Bl(s)]i[ﬁk+1(s) - u,(s)las > 0 (17p)

for i =1,..., m-k, and for all admissible control components

U (8).

PROOF: Let a particular choice of v(s) be made as follows:
vJ(s) = §J(s) for § # 1 and let v,(s) be merely admissible. Then
9(8) - v(s) has at most one non-zero component namely,
91(8) - vi(s). With this choice for v(s), the second integral
in (15) vanishes and condition (16) of the lemma is established.
Condition (17a) and its equivalent condition (17b) are proved
in a simlilar manner.

Returning to equation (8) n 1s decomposed as follows:

2 = (\,0) (18)

where A i8 an n-vector and { is a k-vector. According to the
definition of W(t) in the remarks following equation (14), z(T)

may be written as

and (8) becomes

A’ [X(1) - x(D)] + ¢ [K(D)-KD)] > o. (19)
By utilizing the variation of parameters representation of a
solution of (1) (with E(t,s ) as a fundamental solution matrix of

the homogeneous equation where E(s, s) is the nxn identity.
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t

x(t) = E(t,O)xo + [ E(t,s) B(s) u(s)ds +
o

+ étE(t,s) c(s)ds. (20)

Now, noting that
67 (t) = A (t)E(t,s) (21)
and substituting this and (20) into (19) there results

T s A /A ’~
é 6”(s) B(s)[u(s)-u(s)las + ¢[u(T) - u(T)] > O, (22)

where u(t) is any admissible control vector
Lemma 3 1s established 1n a manner lidentical to that used for

Lemma 2.

LEMMA 3. An extremal control v(s) must be such that its first k
components (represented by él(t),...,ék(t)), when integrated,

yield control components ﬁl(t),...,ﬁk(t) which satisfy
T
[ 16/ (s) B(s) ], [4,(s)-u, (s)1ds + £, (&, (T)-u,(T)] 2 0 (23)

for 1 = 1,...,k and all admlissible components ui(t); furthermore,

they must satisfy
T, A
[ [87(s) B(s)]i [ui(s)-ui(s)]ds >0 (24)
0

for i = k+l,...,m and all admissible components ui(t).

REMARK 1, It 1s observed that the entire matrix B appears in the
integrand whereas in Lemma 2, the matrix was Bl’ i.e., the last
(m-k) columns of B, Thus (24) is equivalent to (17) because
'4
[07(s) B(8) e,y = [6”(s) By(s)], (25)
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for J =1,...,m=k.

Some qualitative properties of extremal controls will now
be established. These are also necessary conditlions for an
optimal control. These conditlons will be more convenlently

phrased in terms of u(t) rather than v(t).

THEOREM 1. Let a(t) be an extremal control for the system (1).
If ﬁi(t) is at its upper limit during an interval of time, then
the function [6/(s) B(s)], > O on that interval. Also, if ﬁi(t)
is at its lower 1limit during an interval of time, then

[67 (s) B(s)]; < O on that interval.

PROOF: Let Gi(t) = azi(t) on an interval [tl’tel and suppose

that [9/ (<) B(-r)]1 < 0 at some point T in [t,, t2]. By continuity,
there is an interval [rl, 12], containing T in its interior, on
which [67(%) B(t)]; < 0. Consider equation (23) with u,(t)

chosen so that
0 outside of [Tl, 72]

A
() - uy(t) = (26)
w(t) > 0 [Tl, 12]
Then from (23) {hoting u, (T) - ﬁi(T) = 0}
T2
J 18'(s) B(s)]; u(s) ds > o. (27)
T
1
But the integrand is negative on the entire interval and this
is a contradiction. The remainder of the theorem is proved in a
similar manner. Q.E.D.
Now consider again the adjoint equations for (4):

v=-F ¢ (28)

or, in terms of 6 and ¢
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Ll

By performing the indicated matrix multiplication the two sets
of equations are obtained:

6 =-n" o (30)
s ’
¢ = - B6 (31)

Notice that O corresponds to the adjoint vector of the original
system (1) whereas ¢, corresponding to the augmented coordinates
of the adjoint vector, is a trivial linear system in that no
components of ¢ appear on the right sides.

Given a fundamental solution E(t, to) to equations (30),

(with E(to, to) = nxn 1dentity) represent 6(t) may be represented

by
o(t) = E(t, t,) 6, (32)
Then (31) yields
t
JORKISEY| -By(s) E(s, t,) 6,ds (33)
(o]

In the following, a technique for utilizing ¢(t) in the con-

struction of optimal trajectorlies will be developed.

DEFINITION 1. Let ui(t) be an admissible component of the control

vector for (1) or (4), and define an interval of type B as a
maximal closed subinterval of the interval [0,T] whereon ui(t)
is extremal, 1.e., assumes maximum or minimum amplitude throughout

the whole subinterval.
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DEFINITION 2. An interval of type P, for ui(t) is defined to be

a maximal closed interval in the interior of which ui(t) is not
extreme valued, 1i.e., u, assumes neither its maximum nor its
minimum amplitude at any point in the interior of the interval.
Note that if Py # [0,T], then ﬁi is extreme at one end (or both)

of Pl.

DEFINITION 3. An interval of type P2 for ui(t) 18 defined to be

a maximal subinterval of [0,T]whereon u; (t) 1s not extreme and

whereon ﬁi(t) is at one of 1ts extremes, but not both.

REMARK 2. The interval [0,T] can be decomposed into non-

overlapping intervals of type B or type Pl whose union is [0,T].

THEOREM 2. Let the system (1) be normal and consider an extremal
control vector 4(t) for (1). For each i = 1,...,m it is the
case that on an interval of type P, for Gi(t), either éi(t) is
at its maximum value or its minimum value at every t at which

ﬁi(t) is defined.

PROOF :Let t belong to the interior of P, and assume that él(t)

is defined and is not extreme. Then, since [67(s) B(s)]i is not
zero on an interval by normality, we may assume further that t is
such a point where [6/(s) B(s)]i is not zero. (This would
eliminate a set of tin the interior of Pl whose measure 1s zero).
By continuity, [67(s) B(s)]i is of one sign on an interval about
the pcint t under consideration. For definlteness, assume

(e’ (t) B(t)]1 < 0, Then since ﬁi(t) 1s not extreme and since éi(t)
is not extreme, an admissible control ui(s) is constructed as

féllows: Let M; be a line through the point (t, ﬁi(t)) whese
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slope 18 bli(t). (For simplicity, it is assumed that

bli(s) < 0 < b,,(8) where both equalities do not hold
simultaneously. Other cases would be treated similarly.) For

a given 6> 0, let m1(6) be a line through (t, Gi(t)) whose

slope is equal to the minimum of bzi(s) on the interval

[t, t + B] and let m2(6) be a line through the same point whose
slope is the maximum of bli(s) on the interval [t, t + 58]. Now
letf%l > O be chosen so small that the line ml(ﬁol) lies entirely
between* the curve Gi(s) and the line M, in the interval [t,t + 501]
and let 8op > O be chosen so small that the line m2(602) lies
between the curve Gi(s) and the line M, in the interval [t, t + 602].
Let 60 denote the smaller of 501 and 502 and further be small enough

that [6'(s) B(s)], < 0 in [t, t + B5] and let m, and m. be the
i 0 1

2
lines corresponding to 60; see Fig., 1,

According to the previous construction, there is a segment S of

the ordinate at t + 60 which 1s cut out by the line m, and the

1

curve Gi(s). Since ﬁi(t) i8 not equal to its minimum value ali(tj,
then by continuity, there is a point P on the segment S such that
the line L through P parallel to m; will intersect the curve ai(s)
at the point R at a time 7 in (t, ¢t + 60) and such that it will
intersect the line m, at a polnt Q at some time o for which this
intersection is above the height ali(d). Now define ui(s) to be
equal to Gi(s) for s $t, and s 2 T. On the interval [t, T]

- —— " D - - - g > WE G R ve S S

* m, may colncide with Ml; similarly m, may coincide with M2.
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define ui(s) to be the segment of m, between the point (t, Gi(t))

2
and Q; and to be the segment of L between Q and R. Thus ui(s)
is an admissible control satisfying the amplitude and the rate
bounds either by construction or because it is equal to Gi(s)

which is assumed admissible.

Now equation (23) with the particular ui(s) Just constructed

is considered. It is seen that

T
f [e'(s) B(s) ] [ﬁi(s) - w,(s)las 2 0 (34)
t
But [6'(s) B(s)], < 0 in [t, 7] while ﬁi(s) - u,(s) > 0 1n
(t, T). This is a contradiction and hence the velocity of Gi(t)
must be extreme. The proof goes through in the same way 1f it is

assumed that [6'(t) B(t)]i > 0. Q.E.D.

REMARK 3. It follows from theorem 2 that the interval [0, T]
is decomposable into subintervals of type B or type Pl which

are nonoverlapping and whose union is [O, T]. In other words, the

optimal control is either at extreme amplitude or extreme velocity,

whenever the veloclty is defined.

THEOREM 3. Let the system (1) be normal and consider an extremal
control vector G(t) for (1). Foreach i =1, ..., m it is the
case that if there is an interval of type Pl for Gi such that
at least one of its endpoints say t*, 1s in the interior of

{0, T], then for all t in the P, interval ?or which ui(t) is
defined: (i) ¢1(t) > ¢i(£*) implies that ﬁi(t) }s at its

maximum value; (i1) ¢1(t) < ¢i<t*) implies that ﬁi(t) is at its
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minimum value,

PROOF : From Theorem 2 éi(t) is at one extreme or the other in

Pl intervals. By hypothesis, since one of the endpoints of the

P, interval under consideration is a point t* interior to (0, T)
it may be assumed without loss of generality (w.l.o.g.) that

the polnt t* is the right end of Pl’ Furthermore, it is

assumed w.l.0.g. that Gi(t*) is a minimum. Now let t be a point
in P, at which éi(t) 1s defined and suppose that ¢i(t) is greater
than ¢i(t*) but éi(t) is minimum (i.e., bli(t))' Figure 2 supplies
the detalls.

ui(s) 18 chosen so that on [t, t + 6] 1t has maximum slope and: lies
above ﬁi(s) while it 1is parallel to ﬁi(s) from t + & to some

point t > t*, (choose 5 so small that T < T). Then let ﬁi(s) = ui(s)
from v to T.

Now from the construction of ui(s) and from equations (23)

t + 0 t*
j— [61(s) B(s)]i[ﬁi(s) - ui(s)]ds + jF[6'(s)B(s)]i[Gi(s)-ui(s)]ds
t t+d
T
+ [ 101(s) B(s)1,[8,(s) - uy(e)las 2 0 (39)
t*

On [t + 6, t*] the function Gi(s) - ui(s) has the constant value,
say -€. Thus the middle integral is

%

-« [ 16'(s) B(e)1, as. (36)
t+06
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Note that as © approaches zero, the integral in (36) (ignoring

the multiplicative factor €) approaches

t* t*
j. [6'(s) B(s)]ids = - j. ¢, (s)ds = ¢,(t) - ¢i(t*)
£ t (37)
Ar>o0
Choose 50 so small that for all 5 < 50
t*
L< j' [6'(s) B(s)], ds < 3T (38)
t+5

Now the first integral in (35) can be made small on the order

of 52 as follows: since Iﬁi(s) - ui(s)l < K, Is - tl on [t, t + 6],

t + 0 t+
(-[ [6'(s) B(s)]i [ﬁi(s) - ui(s)]dsl < Kl_/-l [9'(s)B(s)]i|s-t|ds
t t
(39)
Letting K, = max l[e'(s) B(s)]il yields
[t,t+50]
t+ 5 -
lj. [61(s) B(s) ], [ai(s) - u, (s)las < X, K, g—-. (40)
t
An easler analysis applies to the last integral; namely
T
[6'(s) B(s)], [Q,(s) - u,(s)las| ¢ Ky e (v-tx).  (41)

t*
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As a result of (41), (40), (38) and (35)

[k, K, gi -Lesgge (v-t9)]2o0. (42)

It is next shown that 5 1s bounded above by a constant times €.
It is observed that ﬁi is greater than ﬁi on [t, t + 8], hence
their difference is not zero on [t, t + 8]. Let the minimum of

this difference be denoted by ¢y > 0, then

.

£+0
[Q(s) - ug(s)las 2 ¢ (43)

or
t+5
c. 6 < u,(s) - qQ,(s)
1 - i i
t

= U, (£+6) - u, (£+5) (L4)

1

[Q, (t) - u,(8)]
= €

Thus ¢, © Seord e

(42) yields

s € where cy > 0. Applying this result to

K, K, C3 €2 - Z e+ Ky e (7 - t*) 20 (45)

or

¢ (Ky Ky €3 e + Ky(1 - %) - g) 2 0. (46)
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But (46) is a contradiction because for & sufficiently small,

€ and Tt - t* can be made arbitrarily small which means the
quantity 1in parantheses is negative. Thus it has been shown that
when ¢i(t) > ¢i(t*) then éi(t) is maximum (where it 1s defined).
A similar proof will show that ¢i(t) < ¢1(t*) implies {}i(t) is

minimum.

REMARK 4. Note that intervals of type P2 coincide with intervals
whereon the sign of ¢1(t) - ¢1(t*) is constant for appropriately
chosen points t*¥. It will be shown later that there are only a

finite number of these points t* for a given ¢,(t) and that it is

ociven ot
given av

ct

nasihle 4in agoa whara (+Y 3o he fin
N Ot B wde Bt ke & [y -~ VL AN, A \ \ll e bt EX Y2 e

n thoge
P e 1 TNeEe

o

hat 1
well as the initial time, to construct the family of extremal

controls.

THEOREM 4 . Let the system (1) be normal and consider an extremal
control vector Q(t) for (1). For each 1 = 1, ..., m it is the

case that if the entire interval [0,T] (where T is the minimal time
of response) is of type Pl for Gi(t), then there exists a constant

> O then ﬁi(t) is at its maximum value

¢, such that if ¢i(t) -c

i
< O then ﬁi(t) is at its minimum value (assuming

1
and if ¢i(t) - oy
that éi(t) is defined at t). If there are at least two intervals
of type P2 contained in the interval of type Pl’ then the value of
the constant cy is equal to ¢1 evaluated at any of the interior
endpoints of the type P, intervals.

PROOF :

CASE I: If the whole interval [0,T] is of type P2 the theorem

is trivially true as the constant cy in this case may be chosen te
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be the minimum or the maximum of the function ¢i(t) on [0,T]
4

depending on whether 1

is maximum or minimum.

CASE II: If there are at least two intervals of type P2 contained
in Pl then let t* be an interlor endpoint of a P2 interval.
Congider the case where éi(t) is minimum to the left of t* and
maximum to the right of t* (the other case with the maximum and
minimum reversed would be treated similarly). Let t' be any
interior point of [0,T] which is not the endpoint of an interval
of type P,. Assume that #(t') - ¢(t*) > O but that éi(tV) is at
its minimum. ZLet it be supposed that t' < t¥. Then construct
ui(t) on [0,T] as follows: Let ui(t) = ﬁi(t) for t £ t ; choose

5 > 0 so small that ifrui(t) has maximum velocity on [t', t+ + 6],
is parallel to Gi(t) on [t!' + 6, t*¥], and has minimum slope for

a sultable time duration to the right of t¥*, then the curve ui(t)
will intersect the curve G&(t) at some point 1T to the right of

t*, (This choice is possible because the slope of Gi(t) is
maximim to the right of t*). Finally, let u,(t) = &, (t) on [7,T],
From here on, one proceeds exactly as in the proof of theorem 3

beginning with equation (35).

A METHOD FOR COMPUTATION OF EXTREMAL
TRAJECTORIES FOR AMPLITUDE AND RATE
LIMITED CONTROLS

The foregoing theorems will now be given a more useful interpretation.

Since the case where aj» a2, bli’ b2i’ i=1, ... k are constant
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is of particular interest, as each condlition on extremal
trajectories 1s stated 1ts speclalization to this case will also

be given. Each interval Pl of type Pl has a unique decomposition

P, =P.UP.U...UP (47
1 21 22 2r )

N ?2 consists of

2 2
P p ptl
precisely one point, p =1, 2, ..., r-1. The bar indicates

into intervals P of type P2 where P

topological closure. Let Gi be the ith component of the optimal
control ﬁ corresponding to the function ¢. In all that follows

let P1 be an interval of type P1 for ﬁ Theorems 3 and 4 show that

1 .

corresponding to the interval Pl there 1s a constant ¢, such that

i

the subintervals P2 of P1 coincide with those subintervals of P1

P
whereon sign (¢i(t) - ci) is constant. Let

sign (P, ) 8 sign (¢,(t) - cy)s t e P, (48)
p p

Then (P2 ) is set equal to the length of P2 and several cases

P p
are conslildered. Let T Tp be the endpoints of Pl‘

CASE I: 7,, T, both belong to (0,T). Then it is clear that

Gi(Tl) and ﬁi(rg) are both extremal. In fact

Gi(rl) 3 aEI(Tl) if sgn (P21) = -1 (2)
ali(rl) if sgn (P, ) = +1
! (49)
Gi(Tz) _ a2i(12) if sgn (P2r) = +1 (0)

ali(re) if sgn (Pzr) = -1
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CASE II: Either Ty or T,, but not both belong to'(0,T). Then if
7, € (0, T) 49(a) holds, if T, € (0,T) 49(b) holds. 1In each case
the value of ﬁi at the other endpoint, i.e., eilther ﬁi(o) or ﬁi(T)

must be specified in some other manner.

CASE III: 1, =0, T, = T. Then both Gi(o) and @, (T) must be

1 2
specified, neither 49(a) nor 49(b) hold.

It 1s possible to consider problems wherein nelther Gi(o) nor
ﬁi(T) are specified. In this case the procedure to be described
below is not immediately applicable. This situatlion arises in
the so-called interception problem. A remark on this will be made

at the end of this paper.

The values which ﬁi(t) assumes at Ty and T lead to the following
conditions merely by applying the fundamental theorem of
calculus for absolutely continuous functions.

CONDITION 1

z f by, (t)at + Z f by, (t)dt = Uy (7)) - a4, (7q)
Py

P
2
P P

p? sgn(P, ) = 41 p? sgn(P, ) = -1

p P

If the bounds on the control velocity are constant then

CONDITION 1a

5 !(Pep) boy Z 'Q(Pzp) byy =8y (7)-4, (7y)

p sgn (P2 ) = +1 p sgn (P2 ) = -1
P P
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The requirement that ui(t) shall not achieve an extreme value

in the interior of P1 leads to

CONDITION 2 For each o such that 1 £ o < r (this set could be

void)
Z IPEP by, (t)dt + Z ngp by, (t)dt
plegn (P, ) = +1 pJ sgn (P, ) = -1
°p p
o) <o P S g

f< a5y (Tpq) - ﬁi(Tl)

A
> a14(T54) - wy(7y)

where Tog 1s the right endpoint of the interval P2. The
inequalities ( 3 ) enable this testing procedure to be restricted

to points 71 Again if the bounds on the control velocity are

20
constant

CONDITION 2a

E: .ﬁ (Pep) béi + E: 'ﬁ (P2p) by,
pIsgn (P, ) = +1 psgn (P2 ) = -1
p p
P $o B | P $o -

<a,, -2 (7y)
21 iv'l

A
> ayy - ui(tl)
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DEFINITION 4, Subintervals of [0,T] on which any control u, (t)

may be defined so that Conditions 1 and 2 above are satisfied with

Gi(t) replaced by ui(t), ui(t) = b21(t) if sgn PEP = +1,

ui(t) = bli(t) if sgn P, = -1, are called intervals of type Ps.
¢}

Thus every lnterval of type Pl is also of type P3 by Theorems 3, 4.

The converse need not hold since there may be no extension of

ui(T) from the given interval of type P3 into the entire interval

[0,T7] as an extremal controller.

DEFINITION 5. A decomposition of I = [0,T] into subintervals of
types B and P3 is called acceptable if the resulting control

ui(t) i1s continuous and satisfies the preceding theorems on extremal
controllers. The intervals of type P3 then become intervals of type

P, for ui(t).

The followling theorem 1s of primary importance in establishing a |

procedure for computing extremal controllers.

THEOREM 5. Assume that (G’B)i(t) has at most finitely many zeroes
on [0,T] and the functions ali(t) and agi(t) are constants. Then
there are at most finitély many possible .intervals of type P3,
provided ui(O) and ui(T) are specified in advance.

PROOF: For a linear differential system the interval [0,T] may
be divided into finitely many subintervals in which ¢i(t) is
monotone. To prove this, note that the negation implies that
(O'B)i(t) has infinitely many zeroes in [0,T], contrary to

assumption. Thus the inverse function t(¢i) of the function ¢i(t)

congists of finitely many functions t;(¢;), ..., ts(¢i)’ each a
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monotone function defined on some subinterval of

@)

g, ' 1

[min ¢, (t), max ¢i(tq and 0; < o, implies that t°1(¢i) <t )

te[0,T] te[0,T]
W.l.o.g. it may be assumed that tc(¢1) 1s decreasing for odd o
and increasing for even o.(Figs. 3 and 4.) The other case is

handled similarly. Let to(¢1)==0’ ts+l(¢1)55 T,

The domain of definition of each to(¢i) 1s extended to all of

min max by setting t _(¢.,) equal to t _(¢.*)
[te[O,T]¢i(t) te[O,T]¢1(t)] o1 o4
where ¢1* is the closest point to ¢1 where ta(¢i*) is already

defined (Fig. 5). For each of the finitely many pairs of indices
1

< < -
g5 0,5, 020y <0, 28+ 1, g, (¢i) is defined by
1 %
% ty
1 _
& ot L 8, (t)at  (50)
o=0,+1 ta—1(¢i)

where

b,.(t) if ¢ is odd
Bgi(t) = (51)
bli<t) if ¢ is even
Then it 1s easy to see that each gi o (¢i) 1s a monotone
decreasing function of ¢,. (xr to(¢i) were increasing for o odd,
decreasing for ¢ even, then goi 0.2(§l5i) would still be a monotone

decreasing function.)

It is clear by comparison of (50) with Condition 1 that an interval

of type P3 can occur only when there exlists a painr Oy 02 and a

value ¢i such that
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gi,l o, (91) = uy (6 (81)) - uy (55 (6))) (52)
where ui(t) is the control which must be defined on the interval
according to the definition of an interval of type P3. A number

of cases are now considered:

1f al = 0, 0é = 8 + 1, then we required in the hypotheses of this
theorem that ui(o) and ui(T) be fixed. Thus u, (t (¢ )) - i(t0 (¢i))

is a constant known beforehand.

If 0, =0, g, arbitrary > O then u (t (¢ )) is fixed at a constant
value known beforehand while ui(t (¢ )) = agi(t (¢ )) or

213 (8 (8,)).

If o, =s + 1 while 0y 1s arbitrary < s + 1 then u, (t (¢ )) is
fixed at a constant value known beforehand while ui(td (¢ )) =

1
a2i(tol(¢i)) or ay (t (¢ )).

If 0 <oy <0, <s+ 1 then ui(to (¢i)) - ui(tcl(¢i)) is one of

the four functions aai(t02(¢i)) - avi(tol(¢i))’ 5=1,2, vy=1, 2.

Thus, since it was assumed the functions ali(t)’ agi(t) were constants,

1t has been shown that there are at most finitely many values which
(t (¢ )) - (t (¢ )) may assume for each o;, O,. Since there

are finitely many functlons g o, 62(¢ ) and each of them 1s monotone,

there are but finitely many instances wherein equation (52) may

hold. This completes the proof of the theorem.

REMARK 5. 1In the case where agi(t) and ali(t) are not constant

but vary with time, the finitely many values which we have shown
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in the proof of the theorem may be equal to ui(toé(¢i)) - ui(tal(¢i))
must be replaced by the finitely many functions ui(toé(¢i)) -
u(tcl(¢i)) themselves. Then the conclusion of the theorem remains
valid if for each 0y, 0, the function gcl Oé(¢i) - (ui(toé(¢i)) -
ui(tol(¢i)) has but finitely many zeroes on its domain of
definition. It 1s difflcult to give a reasonably general sufficient
condition under which this holds sothe restriction to the case

where azi(t) and ali(t) are constant was made. Clearly the
likelihood is very small that any of these functions would have
infinitely many zeroes in any given application. Thus it is

fairly safe to assume that there are but finitely many P3 Intervals
even if ali(t) and a2i(t) are time-varylng but it should be kept

in mind that this has not been established and it may be possible

to construct pathological functions aEi(t)’ ali(t) such that

this would not be true.

REMARK 6., Note that the theorem also shows a method for finding

the intervals of type P; since the functions g 4 (¢i) and the
1 72

constants (or functions ui(tcé(¢i)) - ui(tai(¢i)) are readily

determined. An acceptable decomposition of [0,T] into intervals

of types B and P Thus after having found all possible intervals

3.
of type P3 (and the previous theorem assures us that in many cases
this can be done), it remains only to find all acceptable
decompositions of [0,T], and hence all possible controls ui(t)

which satisfy the first four theorems. There being only finitely
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many of these the control ﬁi(t) which satisfies inequality ( 11)

can easily be found. If no values are given beforehand for ui(O)
and or ui(T) then these values could be varied and the above results
applied to each choice of those values to determine the best (in

the sense of (11)) set of values for u,(0) and or u, (T).

A short example i1llustrating the use of the above results is now

given.
AN EXAMPLE TO ILLUSTRATE THE
CONSTRUCTION OF AN EXTREMAL CONTROL
Let the time interval be [0,2] and (O° B)i(t) = - gﬂ cos (%E t).
Then @i(t) = sin (gﬂ t). Suppose that ayy =1, a;y = -1,

Require ﬁi(o) = 0, ﬁi(2) = 0. The extremal control ﬁi(t) on [0,2]

will be constructed. The method used will be graphic and will be
special to the constants 8145 3745 b2i’ bli in this problem.

Its relationshlp to the immediately preceding discussion should
be clear, as well as generalizations to different constant bounds.
An interval of type P3 occurs whenever 1t 1s possible to draw a
level line L through the graph of sin (gﬂ t) so that the end-
points of L lie on the graph of sin (%1 t) or else meet the lines
t =0or t =2 and satisfles the following requirements: (Compare
with Conditions 1 and 2 above.)

1. If the endpoints of L are in (0,2) then the sum S of

the lengths of those segments of L 1lying below sin (g1 t) minus

the sum of the lengths of those segments of L lying above sin

(gﬂ t) must be 2, -2, or 0. If L' is any segment of L such that
the left endpoints of L and L' coincide then, (a) If the first

segment of L! lies below sin (%ﬂ t) the sum S' of the lengths
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of those segments of L! lying below sin (gﬂ t) minus the sum of
the lengths of those segments of L' lying above sin (gﬂ t) must be
<2 and >0. (b) If the first segment of L' lies above sin (%ﬂ t)
then the corresponding quantity must be >-2 and <O.

2. If t =0 is an endpoint of L and the right hand endpoint
of L belongs to (0, 2) then S = 1 or -1 and -1 < S' < 1 for any
L', A similar situation occurs if the left hand endpoint of L
lies in (0, 2) and the right hand endpoint is at t = 2, but here
L, L' are taken to have a common right hand endpoint.

3. If L stretches from t = 0 to t = 2 then S = 0 and
-1 < St <1 for any L' having an endpoint in common with L.

The graph in Fig. 6 shows all possible intervals of type P3
indicated by level lines through the graph. The only acceptable
sequence of intervals consists of the single interval P1 of type

P. which is indicated in the figure. This 1s clear by inspectilon,

1
using the results of the first four theorems. PFig. 7 shows the

resulting extremal control ui(t).

CONCLUSIONS
Necessary conditlions leading to a method for the determination
of bounded control amplitude and bounded amplitude rate time
optimal control trajectories by backing out of the origin were
developed. It can thus be saild the theory of bounded rate
optimal control has been brought to the same stage of development
as the theory of optimal control without rate or phase bounds.
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Figure 2,

MINIMUM AMPLITUDE
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Construction of Admissible Control in Proof of Necessary
Conditions for P1 Intervals
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Figure 3. The Function & (t), Indicating Intervals of Monotonicity
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P+

DOMAIN OF DEFINITION OF t,(g,)

Figure 4. The Inverse Functions t (9,) of 8,
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THESE LINES
ARE IDENTICAL

THESE LINES
ARE IDENTICAL

Figure 5. Final Form of the Functions to(qb i)
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NOTE: BROKEN LINES ARE ACTUALLY AT THE SAME LEVEL AS ADJACENT SOLID LINES

Figure 6, All Possible P, Intervals for the Function ¢(t) = sin ( 57"’()
On the Interval [0, 2:]
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Figure 7, Extremal Control Constructed Using Results Shown
on Figure 6
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